Fibroblast Growth Factor 4 Directs Gap Junction Expression in the Mesenchyme of the Vertebrate Limb Bud

نویسندگان

  • H. Makarenkova
  • D.L. Becker
  • C. Tickle
  • A.E. Warner
چکیده

Pattern in the developing limb depends on signaling by polarizing region mesenchyme cells, which are located at the posterior margin of the bud tip. Here we address the underlying cellular mechanisms. We show in the intact bud that connexin 43 (Cx43) and Cx32 gap junctions are at higher density between distal posterior mesenchyme cells at the tip of the bud than between either distal anterior or proximal mesenchyme cells. These gradients disappear when the apical ectodermal ridge (AER) is removed. Fibroblast growth factor 4 (FGF4) produced by posterior AER cells controls signaling by polarizing cells. We find that FGF4 doubles gap junction density and substantially improves functional coupling between cultured posterior mesenchyme cells. FGF4 has no effect on cultured anterior mesenchyme, suggesting that any effects of FGF4 on responding anterior mesenchyme cells are not mediated by a change in gap junction density or functional communication through gap junctions. In condensing mesenchyme cells, connexin expression is not affected by FGF4. We show that posterior mesenchyme cells maintained in FGF4 under conditions that increase functional coupling maintain polarizing activity at in vivo levels. Without FGF4, polarizing activity is reduced and the signaling mechanism changes. We conclude that FGF4 regulation of cell-cell communication and polarizing signaling are intimately connected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth

BACKGROUND The outgrowth of the vertebrate limb bud is the result of a reciprocal interaction between the mesenchyme and a specialized region of the ectoderm, the apical ectodermal ridge (AER), which overlies it. Signals emanating from the AER act to maintain the underlying mesenchyme, called the progress zone, in a highly proliferative and undifferentiated state. Removal of the AER results in ...

متن کامل

Tbx2 Terminates Shh/Fgf Signaling in the Developing Mouse Limb Bud by Direct Repression of Gremlin1

Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient hindlimbs, Shh/...

متن کامل

Transcriptional cascades responsible for initiating the formation of vertebrate embryonic structures

The development of vertebrate limbs is an excellent model to study patterning and growth regulation in embryogenesis (Capdevila and Izpisua Belmonte, 2001; Johnson and Tabin, 1997). The limb buds that result in morphologically distinct forelimbs and hindlimbs arise from the lateral plate mesoderm (LPM) at precise locations along the anteroposterior (AP) axis of the embryo. The induction of limb...

متن کامل

Mouse Twist is required for fibroblast growth factor-mediated epithelial–mesenchymal signalling and cell survival during limb morphogenesis

Mouse Twist is essential for cranial neural tube, limb and somite development. [Genes Dev. 9 (1995) 686]. To identify the molecular defects disrupting limb morphogenesis, we have analysed expression of mesenchymal transcription factors involved in patterning and the cell-cell signalling cascades controlling limb bud development. These studies establish that Twist is essential for maintenance an...

متن کامل

Identification and analysis of a conserved Tcfap2a intronic enhancer element required for expression in facial and limb bud mesenchyme.

Tcfap2a, the gene encoding the mouse AP-2alpha transcription factor, is required for normal development of multiple structures during embryogenesis, including the face and limbs. Using comparative sequence analysis and transgenic-mouse experiments we have identified an intronic enhancer within this gene that directs expression to the face and limb mesenchyme. There are two conserved sequence bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 138  شماره 

صفحات  -

تاریخ انتشار 1997